Bronchiolitis

Mark A. Brown, MD
Arizona Respiratory Center
mabrown@arc.arizona.edu
Definition

- Acute inflammation of the lower respiratory tract typically leading to distress, expiratory obstruction and wheezing

- Usually infectious in nature, but can result from other forms of lung injury:
 - chemical
 - immunologic
 - other
Pathophysiology

- Increased thickness of airway wall
 - Vascular engorgement
 - Cellular infiltration
 - Mucosal and submucosal edema
- Increased luminal content
 - Increased secretions
 - Rheologic changes in mucus
 - Epithelial sloughing
 - Impaired ciliokinesis
Pathophysiology

• Airway smooth muscle contraction
 • Autonomic dysfunction
 • Mediator (cytokine) release
 • Impairment of epithelial-mediated muscle relaxation (NO)
 • Altered activation characteristics of airway smooth muscle

• All lead to lower airway obstruction and increased airway resistance.
Microbiology

• RSV - far and away most common cause (80%); 95% of children have serologic evidence of infection by age 2

• Parainfluenza types 1, 2 and 3 (25%)

• Influenza A & B (5%)

• Rhinovirus (5%)

• Adenovirus (5%)

• Mycoplasma (5%?)

• Others: Human Metapneumovirus, Bocavirus
Children at High Risk for Severe RSV

Premature birth
- Altered airway anatomy
- Absence of maternal antibody

Chronic Lung Disease
- Bronchial hyper-responsiveness
- Reduced lung capacity

Congenital Heart disease
- Pulmonary vascular hyper-responsiveness
- Pulmonary hypertension
- Increased pulmonary blood flow

Neuromuscular disease
- Decreased respiratory muscle strength and endurance

Immune deficiency
- Decreased host defenses
- Impaired capacity to eliminate virus

Adapted from a presentation by L. Weisman, MD: 1st International Congress RSV, 2002
Other Populations at Risk for Severe RSV

- Infants with Cystic Fibrosis
 - Already have airway inflammation, subtle nutritional deficiencies
 - Study completed 2003
 - Results out this year?

- Native American and Alaskan Native Children
 - Subtle differences in immune function conveying greater risk
 - Generally less optimal living situation
Risk Factors for Hospitalization with RSV
1708 Hospitalized Infants in Rochester, NY

- Prematurity
- Chronic Disease
- Age < 6 wks

1 or more Risk Factors
RSV Bronchiolitis

Normal Lung

RSV-infected Lung

Bronchocentric Infiltrates

Epithelial sloughing with exudates and fibrin
RSV Bronchiolitis

- Peribronchiolar Tissue
- Goblet Cell
- Submucosa
- Blood Vessel
- Smooth Muscle Contraction
- Alveoli
- Ciliated Columnar Epithelium
Budding RSV Virion

Envelope Spikes
G (Attachment)
F (Fusion)

Inner Envelope
M and M2 – Membrane associated (Matrix Proteins)

Nucleocapsid
N (Nucleoprotein)
P (Phosphoprotein)
L (Polymerase)

Nonstructural
NS1 and NS2 – proteins unique to pneumoviruses

Surface of Infected Cells
SH (1A) – small surface protein

Collins, P. Fields Virology. 2nd Ed
Respiratory Syncytial Virus
Clinical Features

• URI prodrome
 • Low grade fever, nasal discharge/congestion

• Signs/symptoms of lower respiratory tract disease
 • Cough, tachypnea, wheeze, hypoxemia

• Apnea may occur in neonates
Typical CXR of RSV Lower Respiratory Tract Infection (LRTI)

Air Trapping
Atelectasis
Streaky Markings
Clinical course

- Incubation period: 2-8 days
- Upper respiratory infection: 1-3 days
- Worsening lower airway disease: 3-5 days
- Full recovery: 2-8 weeks

Swingler et al. 2000
Treatment

• Supportive care - oxygen, fluids
• Bronchodilators - albuterol vs ipratropium vs epinephrine
• Systemic steroids only in severe cases
• Antibiotics - only as indicated
• Ribavirin only in specific instances
 • Immunocompromised infants, children, adults
Prevention of RSV

– Efforts to reduce RSV spread include:
 • Limiting contact with infected people
 • Removal from day-care and group settings
 • Proper hygiene: Frequent hand washing
 • Disinfecting surfaces exposed to infectious secretions

– Despite optimal practices, most children are exposed to RSV by 2 years of age.

– Passive Immunoprophylaxis

RSV Transmission

- RSV is transmitted by droplets, large particles, and fomites.
- RSV can survive for as long as 6 hours on stethoscopes and up to 12 hours on hard, nonporous surfaces.
- Over 50% of medical personnel are infected with RSV when RSV is prevalent in the community.
- Nosocomial infection remains an enormous problem.

The RSV-Asthma Link

- Several prospective studies have shown that RSV bronchiolitis is associated with recurrent wheezing during subsequent years.
- Recurrent wheezing tends to diminish by early adolescence (age 13)
- Conclusion: RSV appears to be linked to recurrent childhood wheezing through early adolescence

The Tucson Children’s Respiratory Study

- 207 children with mild RSV LRTI not hospitalized
- Controls had no LRTI in the first 3 years of life
- Risk for frequent wheeze was still significantly increased at 11 years (p ≤ 0.01)

The Tucson Children’s Respiratory Study
Risk of Subsequent Wheezing After RSV

Relationship Between RSV Bronchiolitis In Infancy and Recurrent Wheezing During Childhood

<table>
<thead>
<tr>
<th>First author</th>
<th>Years of follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>PULLAN</td>
<td>8-10</td>
</tr>
<tr>
<td>MOK</td>
<td>7</td>
</tr>
<tr>
<td>SIGURS</td>
<td>3</td>
</tr>
<tr>
<td>OSUNDWA</td>
<td>2</td>
</tr>
</tbody>
</table>

- **<5 yrs**
- **≥5 yrs**

- Favors no association
- OR=1
- Favors association

May there never develop in me the notion that my education is complete, but give me the strength and leisure and zeal continually to enlarge my knowledge.

Moses Maimonides