Objectives

• Briefly review pulmonary anatomy and physiology
• Review lung volumes and capacities
• Provide an overview of pulmonary function tests
• Discuss spirometry and review its clinical applications
Anatomy

• Lungs comprised of
 – Airways
 – Alveoli

http://www.aduk.org.uk/gfx/lungs.jpg
The Airways

- Conducting zone: no gas exchange occurs
 - Anatomic dead space
- Transitional zone: alveoli appear, but are not great in number
- Respiratory zone: contain the alveolar sacs

Weibel ER: Morphometry of the Human Lung. Berlin and New York: Springer-Verlag, 1963
The Alveoli

- Approximately 300 million alveoli
- 1/3 mm diameter
- Total surface area if they were complete spheres 85 sq. meters (size of a tennis court)
Mechanics of Breathing

• Inspiration
 – Active process

• Expiration
 – Quiet breathing: passive
 – Can become active
Lung Volumes

- 4 Volumes
- 4 Capacities
 - Sum of 2 or more lung volumes
Tidal Volume (TV)

- Volume of air inspired and expired during normal quiet breathing
Inspiratory Reserve Volume (IRV)

- The maximum amount of air that can be inhaled after a normal tidal volume inspiration.
Expiratory Reserve Volume (ERV)

- Maximum amount of air that can be exhaled from the resting expiratory level.
Residual Volume (RV)

- Volume of air remaining in the lungs at the end of maximum expiration
Vital Capacity (VC)

- Volume of air that can be exhaled from the lungs after a maximum inspiration
- FVC: when VC is exhaled forcefully
- SVC: when VC is exhaled slowly
- VC = IRV + TV + ERV
Inspiratory Capacity (IC)

- Maximum amount of air that can be inhaled from the end of a tidal volume
- \(IC = IRV + TV \)
Functional Residual Capacity (FRC)

- Volume of air remaining in the lungs at the end of a TV expiration
- The elastic force of the chest wall is exactly balanced by the elastic force of the lungs
- $FRC = ERV + RV$
Total Lung Capacity (TLC)

- Volume of air in the lungs after a maximum inspiration
- TLC = IRV + TV + ERV + RV
Pulmonary Function Tests

- Evaluates 1 or more major aspects of the respiratory system
 - Lung volumes
 - Airway function
 - Gas exchange
Indications

• Detect disease
• Evaluate extent and monitor course of disease
• Evaluate treatment
• Measure effects of exposures
• Assess risk for surgical procedures
Pulmonary Function Tests

• Airway function
 – Simple spirometry
 – Forced vital capacity maneuver
 – Maximal voluntary ventilation
 – Maximal inspiratory/expiratory pressures
 – Airway resistance

• Lung volumes and ventilation
 – Functional residual capacity
 – Total lung capacity, residual volume
 – Minute ventilation, alveolar ventilation, dead space
 – Distribution of ventilation
Pulmonary Function Tests

- Diffusing capacity tests
- Blood gases and gas exchange tests
 - Blood gas analysis
 - Pulse oximetry
 - Capnography
- Cardiopulmonary exercise tests
- Metabolic measurements
 - Resting energy expenditure
 - Substrate utilization
- Chemical analysis of exhaled breath
Spirometry

- Measurement of the pattern of air movement into and out of the lungs during controlled ventilatory maneuvers.
- Often done as a maximal expiratory maneuver
Importance

- Patients and physicians have inaccurate perceptions of severity of airflow obstruction and/or severity of lung disease by physical exam
- Provides objective evidence in identifying patterns of disease
Lung Factors Affecting Spirometry

- Mechanical properties
- Resistive elements
Mechanical Properties

• Compliance
 – Describes the stiffness of the lungs
 – Change in volume over the change in pressure

• Elastic recoil
 – The tendency of the lung to return to its resting state
 – A lung that is fully stretched has more elastic recoil and thus larger maximal flows
Resistive Properties

• Determined by airway caliber
• Affected by
 – Lung volume
 – Bronchial smooth muscles
 – Airway collapsibility
Factors That Affect Lung Volumes

- Age
- Sex
- Height
- Weight
- Race
- Disease
Technique

- Have patient seated comfortably
- Closed-circuit technique
 - Place nose clip on
 - Have patient breathe on mouthpiece
 - Have patient take a deep breath as fast as possible
 - Blow out as hard as they can until you tell them to stop
QuickTime™ and a decompressor are needed to see this picture.
Terminology

- Forced vital capacity (FVC):
 - Total volume of air that can be exhaled forcefully from TLC
 - The majority of FVC can be exhaled in <3 seconds in normal people, but often is much more prolonged in obstructive diseases
 - Measured in liters (L)
• Interpretation of % predicted:
 – 80-120% Normal
 – 70-79% Mild reduction
 – 50%-69% Moderate reduction
 – <50% Severe reduction
Terminology

- Forced expiratory volume in 1 second: (FEV$_1$)
 - Volume of air forcefully expired from full inflation (TLC) in the first second
 - Measured in liters (L)
 - Normal people can exhale more than 75-80% of their FVC in the first second; thus the FEV1/FVC can be utilized to characterize lung disease
FEV₁

- Interpretation of % predicted:
 - >75% Normal
 - 60%-75% Mild obstruction
 - 50-59% Moderate obstruction
 - <49% Severe obstruction
Terminology

• Forced expiratory flow 25-75% (FEF\textsubscript{25-75})
 – Mean forced expiratory flow during middle half of FVC
 – Measured in L/sec
 – May reflect effort independent expiration and the status of the small airways
 – Highly variable
 – Depends heavily on FVC
• Interpretation of % predicted:
 – >60% Normal
 – 40-60% Mild obstruction
 – 20-40% Moderate obstruction
 – <10% Severe obstruction
Acceptability Criteria

- Good start of test
- No coughing
- No variable flow
- No early termination
- Reproducibility
Flow-Volume Loop

- Illustrates maximum expiratory and inspiratory flow-volume curves
- Useful to help characterize disease states (e.g. obstructive vs. restrictive)

Categories of Disease

- Obstructive
- Restrictive
- Mixed
Obstructive Disorders

- Characterized by a limitation of expiratory airflow
 - Examples: asthma, COPD
- Decreased: FEV$_1$, FEF$_{25-75}$, FEV$_1$/FVC ratio (<0.8)
- Increased or Normal: TLC
Spirometry in Obstructive Disease

- Slow rise in upstroke
- May not reach plateau
Restrictive Lung Disease

- Characterized by diminished lung volume due to:
 - change in alteration in lung parenchyma (interstitial lung disease)
 - disease of pleura, chest wall (e.g. scoliosis), or neuromuscular apparatus (e.g. muscular dystrophy)
- Decreased TLC, FVC
- Normal or increased: FEV$_1$/FVC ratio
Restrictive Disease

- Rapid upstroke as in normal spirometry
- Plateau volume is low
Large Airway Obstruction

- Characterized by a truncated inspiratory or expiratory loop
Lung Volumes

- Measured through various methods
 - Dilutional: helium, 100% oxygen
 - Body plethysmography
Changes in Lung Volumes in Various Disease States

Clinical Applications
Case #1

SPIROMETRY

<table>
<thead>
<tr>
<th>Test</th>
<th>Pred</th>
<th>Best</th>
<th>% Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC [l]</td>
<td>3.48</td>
<td>3.84</td>
<td>110</td>
</tr>
<tr>
<td>FEV 1 [l]</td>
<td>2.99</td>
<td>3.20</td>
<td>107</td>
</tr>
<tr>
<td>FEV 1 % FVC [%]</td>
<td>86.00</td>
<td>83.12</td>
<td>97</td>
</tr>
<tr>
<td>PEF [l/s]</td>
<td>6.47</td>
<td>6.49</td>
<td>100</td>
</tr>
<tr>
<td>FEF 50 [l/s]</td>
<td>3.72</td>
<td>3.79</td>
<td>102</td>
</tr>
<tr>
<td>FEF 75 [l/s]</td>
<td>2.07</td>
<td>1.19</td>
<td>58</td>
</tr>
<tr>
<td>MMEF 25/75 [l/s]</td>
<td>3.36</td>
<td>2.99</td>
<td>89</td>
</tr>
</tbody>
</table>
Case #2

SPIROMETRY

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pred</th>
<th>Best</th>
<th>% Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>4.44</td>
<td>4.31</td>
<td>97</td>
</tr>
<tr>
<td>FEV 1</td>
<td>3.83</td>
<td>2.15</td>
<td>56</td>
</tr>
<tr>
<td>FEV 1 % FVC</td>
<td>86.00</td>
<td>49.88</td>
<td>58</td>
</tr>
<tr>
<td>PEF</td>
<td>8.01</td>
<td>5.23</td>
<td>65</td>
</tr>
<tr>
<td>FEF 50</td>
<td>4.79</td>
<td>1.23</td>
<td>26</td>
</tr>
<tr>
<td>FEF 75</td>
<td>2.50</td>
<td>0.41</td>
<td>16</td>
</tr>
<tr>
<td>MMEF 25/75</td>
<td>4.27</td>
<td>0.93</td>
<td>22</td>
</tr>
</tbody>
</table>
Case #3

SPIROMETRY

<table>
<thead>
<tr>
<th>Measure</th>
<th>Pred</th>
<th>Best</th>
<th>% Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC..........[l]</td>
<td>3.60</td>
<td>1.24</td>
<td>34</td>
</tr>
<tr>
<td>FEV 1..........[l]</td>
<td>3.09</td>
<td>1.19</td>
<td>38</td>
</tr>
<tr>
<td>FEV 1 % FVC..........[%]</td>
<td>86.00</td>
<td>95.65</td>
<td>111</td>
</tr>
<tr>
<td>PEF..........[l/s]</td>
<td>6.70</td>
<td>4.37</td>
<td>65</td>
</tr>
<tr>
<td>FEF 50..........[l/s]</td>
<td>3.88</td>
<td>2.18</td>
<td>56</td>
</tr>
<tr>
<td>FEF 75..........[l/s]</td>
<td>2.10</td>
<td>0.81</td>
<td>38</td>
</tr>
<tr>
<td>MMEF 25/75..........[l/s]</td>
<td>3.48</td>
<td>1.69</td>
<td>48</td>
</tr>
</tbody>
</table>
Case #4

SPIROMETRY

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Best</th>
<th>% Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC [l]</td>
<td>4.93</td>
<td>3.40</td>
<td>69</td>
</tr>
<tr>
<td>FEV 1 [l]</td>
<td>4.25</td>
<td>2.17</td>
<td>51</td>
</tr>
<tr>
<td>FEV 1 % FVC [%]</td>
<td>84.68</td>
<td>63.72</td>
<td>75</td>
</tr>
<tr>
<td>PEF [l/s]</td>
<td>9.00</td>
<td>6.56</td>
<td>73</td>
</tr>
<tr>
<td>FEF 50 [l/s]</td>
<td>5.48</td>
<td>1.44</td>
<td>26</td>
</tr>
<tr>
<td>FEF 75 [l/s]</td>
<td>2.55</td>
<td>0.35</td>
<td>14</td>
</tr>
<tr>
<td>MMEF 25/75 [l/s]</td>
<td>4.75</td>
<td>1.09</td>
<td>23</td>
</tr>
</tbody>
</table>
Case #5

SPIROMETRY

<table>
<thead>
<tr>
<th></th>
<th>Pred</th>
<th>Pre</th>
<th>% Pred</th>
<th>Post</th>
<th>% Pred</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC.............[l]</td>
<td>1.88</td>
<td>1.58</td>
<td>84</td>
<td>1.91</td>
<td>102</td>
<td>21.07</td>
</tr>
<tr>
<td>FEV 1...........[l]</td>
<td>1.65</td>
<td>1.04</td>
<td>63</td>
<td>1.44</td>
<td>87</td>
<td>38.62</td>
</tr>
<tr>
<td>FEV 1 % FVC.....[%]</td>
<td>86.00</td>
<td>66.05</td>
<td>77</td>
<td>75.63</td>
<td>88</td>
<td>14.50</td>
</tr>
<tr>
<td>PEF.............[l/s]</td>
<td>3.28</td>
<td>2.39</td>
<td>73</td>
<td>3.42</td>
<td>104</td>
<td>42.85</td>
</tr>
<tr>
<td>FEF 50..........[l/s]</td>
<td>2.31</td>
<td>0.75</td>
<td>32</td>
<td>1.40</td>
<td>61</td>
<td>86.40</td>
</tr>
<tr>
<td>FEF 75..........[l/s]</td>
<td>1.18</td>
<td>0.13</td>
<td>11</td>
<td>0.43</td>
<td>36</td>
<td>234.65</td>
</tr>
<tr>
<td>MMEF 25/75.....[l/s]</td>
<td>2.02</td>
<td>0.55</td>
<td>27</td>
<td>1.10</td>
<td>55</td>
<td>101.64</td>
</tr>
</tbody>
</table>